Query#
- class datacube.api.query.Query(index=None, product=None, geopolygon=None, like=None, **search_terms)[source]#
Parses search terms in preparation for querying the Data Cube Index.
Create a
Query
object by passing it a set of search terms as keyword arguments.>>> query = Query(product='ls5_nbar_albers', time=('2001-01-01', '2002-01-01'))
Use by accessing
search_terms
:>>> query.search_terms['time'] Range(begin=datetime.datetime(2001, 1, 1, 0, 0, tzinfo=tzutc()), end=datetime.datetime(2002, 1, 1, 23, 59, 59, 999999, tzinfo=tzutc()))
By passing in an
index
, the search parameters will be validated as existing on theproduct
.Used by
datacube.Datacube.find_datasets()
anddatacube.Datacube.load()
.- Parameters
index (datacube.index.Index) – An optional index object, if checking of field names is desired.
product (str) – name of product
geopolygon (geometry.Geometry or None) – spatial bounds of the search
like (xarray.Dataset) – spatio-temporal bounds of like are used for the search
search_terms –
measurements - list of measurements to retrieve
latitude, lat, y, longitude, lon, long, x - tuples (min, max) bounding spatial dimensions
’extra_dimension_name’ (e.g. z) - tuples (min, max) bounding extra dimensions specified by name for 3D datasets. E.g. z=(10, 30).
crs - spatial coordinate reference system to interpret the spatial bounds
group_by - observation grouping method. One of time, solar_day. Default is time
- Members
Attributes:
Access the search terms as a dictionary.