Source code for datacube.utils.geometry._warp

# This file is part of the Open Data Cube, see https://opendatacube.org for more information
#
# Copyright (c) 2015-2020 ODC Contributors
# SPDX-License-Identifier: Apache-2.0
from typing import Union, Optional
import rasterio.warp  # type: ignore[import]
import rasterio.crs   # type: ignore[import]
import numpy as np
from affine import Affine
from . import GeoBox

Resampling = Union[str, int, rasterio.warp.Resampling]  # pylint: disable=invalid-name
Nodata = Optional[Union[int, float]]  # pylint: disable=invalid-name
_WRP_CRS = rasterio.crs.CRS.from_epsg(3857)


def resampling_s2rio(name: str) -> rasterio.warp.Resampling:
    """
    Convert from string to rasterio.warp.Resampling enum, raises ValueError on bad input.
    """
    try:
        return getattr(rasterio.warp.Resampling, name.lower())
    except AttributeError:
        raise ValueError('Bad resampling parameter: {}'.format(name))


def is_resampling_nn(resampling: Resampling) -> bool:
    """
    :returns: True if resampling mode is nearest neighbour
    :returns: False otherwise
    """
    if isinstance(resampling, str):
        return resampling.lower() == 'nearest'
    return resampling == rasterio.warp.Resampling.nearest


def warp_affine_rio(src: np.ndarray,
                    dst: np.ndarray,
                    A: Affine,
                    resampling: Resampling,
                    src_nodata: Nodata = None,
                    dst_nodata: Nodata = None,
                    **kwargs) -> np.ndarray:
    """
    Perform Affine warp using rasterio as backend library.

    :param        src: image as ndarray
    :param        dst: image as ndarray
    :param          A: Affine transform, maps from dst_coords to src_coords
    :param resampling: str|rasterio.warp.Resampling resampling strategy
    :param src_nodata: Value representing "no data" in the source image
    :param dst_nodata: Value to represent "no data" in the destination image

    :param     kwargs: any other args to pass to ``rasterio.warp.reproject``

    :returns: dst
    """
    crs = _WRP_CRS
    src_transform = Affine.identity()
    dst_transform = A

    if isinstance(resampling, str):
        resampling = resampling_s2rio(resampling)

    # GDAL support for int8 is patchy, warp doesn't support it, so we need to convert to int16
    if src.dtype.name == 'int8':
        src = src.astype('int16')

    if dst.dtype.name == 'int8':
        _dst = dst.astype('int16')
    else:
        _dst = dst

    rasterio.warp.reproject(src,
                            _dst,
                            src_transform=src_transform,
                            dst_transform=dst_transform,
                            src_crs=crs,
                            dst_crs=crs,
                            resampling=resampling,
                            src_nodata=src_nodata,
                            dst_nodata=dst_nodata,
                            **kwargs)

    if dst is not _dst:
        # int8 workaround copy pixels back to int8
        np.copyto(dst, _dst, casting='unsafe')

    return dst


[docs]def warp_affine(src: np.ndarray, dst: np.ndarray, A: Affine, resampling: Resampling, src_nodata: Nodata = None, dst_nodata: Nodata = None, **kwargs) -> np.ndarray: """ Perform Affine warp using best available backend (GDAL via rasterio is the only one so far). :param src: image as ndarray :param dst: image as ndarray :param A: Affine transformm, maps from dst_coords to src_coords :param resampling: str resampling strategy :param src_nodata: Value representing "no data" in the source image :param dst_nodata: Value to represent "no data" in the destination image :param kwargs: any other args to pass to implementation :returns: dst """ return warp_affine_rio(src, dst, A, resampling, src_nodata=src_nodata, dst_nodata=dst_nodata, **kwargs)
[docs]def rio_reproject(src: np.ndarray, dst: np.ndarray, s_gbox: GeoBox, d_gbox: GeoBox, resampling: Resampling, src_nodata: Nodata = None, dst_nodata: Nodata = None, **kwargs) -> np.ndarray: """ Perform reproject from ndarray->ndarray using rasterio as backend library. :param src: image as ndarray :param dst: image as ndarray :param s_gbox: GeoBox of source image :param d_gbox: GeoBox of destination image :param resampling: str|rasterio.warp.Resampling resampling strategy :param src_nodata: Value representing "no data" in the source image :param dst_nodata: Value to represent "no data" in the destination image :param kwargs: any other args to pass to ``rasterio.warp.reproject`` :returns: dst """ if isinstance(resampling, str): resampling = resampling_s2rio(resampling) # GDAL support for int8 is patchy, warp doesn't support it, so we need to convert to int16 if src.dtype.name == 'int8': src = src.astype('int16') if dst.dtype.name == 'int8': _dst = dst.astype('int16') else: _dst = dst rasterio.warp.reproject(src, _dst, src_transform=s_gbox.transform, dst_transform=d_gbox.transform, src_crs=str(s_gbox.crs), dst_crs=str(d_gbox.crs), resampling=resampling, src_nodata=src_nodata, dst_nodata=dst_nodata, **kwargs) if dst is not _dst: # int8 workaround copy pixels back to int8 np.copyto(dst, _dst, casting='unsafe') return dst